Estem treballant per restaurar l'aplicació de Unionpedia a la Google Play Store
SortintEntrant
🌟Hem simplificat el nostre disseny per a una millor navegació!
Instagram Facebook X LinkedIn

Conjunt numerable

Índex Conjunt numerable

En matemàtiques, un conjunt és numerable quan els seus elements poden posar-se en correspondència un a un amb un subconjunt del conjunt dels nombres naturals.

Taula de continguts

  1. 25 les relacions: Anàlisi matemàtica, Axioma de l'elecció, Carl Friedrich Gauß, Conjunt, Diagonalització de Cantor, Equació polinòmica, Equipotència, Funció bijectiva, Georg Cantor, Hotel infinit, Journal de Crelle, Julius Wilhelm Richard Dedekind, Leopold Kronecker, Matemàtiques, Nombre algebraic, Nombre cardinal, Nombre de Liouville, Nombre natural, Nombre ordinal, Nombre parell, Nombre real, Nombre transcendent, Teoria de conjunts, Teoria de la mesura, Topologia.

Anàlisi matemàtica

convergència, la teoria de la mesura, la geometria i la teoria de la probabilitat i l'estadística Lanàlisi matemàtica, o simplement anàlisi (del grec ανάλυσις análysis, 'solució', ἀναλύειν analýein, 'resoldre'), és la branca de les matemàtiques que té per objecte l'estudi de les relacions de dependència d'una variable respecte d'una altra, és a dir, de les funcions.

Veure Conjunt numerable і Anàlisi matemàtica

Axioma de l'elecció

L'axioma de l'elecció (AE) és un axioma de la teoria de conjunts.

Veure Conjunt numerable і Axioma de l'elecció

Carl Friedrich Gauß

Johann Carl Friedrich Gauss (ˈɡaʊs; Gauß, Carolus Fridericus Gauss) (Braunschweig, Regne de Braunschweig-Wolfenbüttel, 30 d'abril del 1777 - Göttingen, Regne de Hannover, 23 de febrer del 1855), fou un matemàtic i científic alemany que feu descobertes significatives en molts camps, incloent-hi la teoria de nombres, l'estadística, l'anàlisi, la geometria diferencial, la geodèsia, l'electroestàtica, l'astronomia i l'òptica.

Veure Conjunt numerable і Carl Friedrich Gauß

Conjunt

Exemple de conjunt el conjunt '''A''' conté els elements ''a'',''i'',''l'',''o'',''r'' i ''t'', o expressat matemàticament; A.

Veure Conjunt numerable і Conjunt

Diagonalització de Cantor

numerables. La successió de la part inferior no pot aparèixer enlloc de l'enumeració de successions de la part superior. La diagonalització de Cantor, també coneguda com a mètode diagonal, és una prova matemàtica albirada per Georg Cantor per a demostrar que el conjunt dels nombres reals no és numerable.

Veure Conjunt numerable і Diagonalització de Cantor

Equació polinòmica

Una equació polinòmica és un tipus d'equació en la qual les expressions matemàtiques que conformen l'equació són únicament polinomis de les variables incògnita que hi intervenen.

Veure Conjunt numerable і Equació polinòmica

Equipotència

En la teoria dels conjunts, es diu que dos conjunts E i F són equipotents, i es nota E ≈ F, si existeix una bijecció f: E \to F. Per definició, dos conjunts (finits o no) tenen la mateixa cardinalitat (el mateix nombre d'elements) si són equipotents.

Veure Conjunt numerable і Equipotència

Funció bijectiva

Una funció bijectiva. En matemàtiques, una funció o aplicació bijectiva també anomenada simplement una bijecció és una funció f d'un conjunt X a un conjunt Y (f:X → Y) amb la propietat que per a cada y de Y hi ha exactament un x de X tal que f(x).

Veure Conjunt numerable і Funció bijectiva

Georg Cantor

Georg Ferdinand Ludwig Philipp Cantor (Sant Petersburg, 3 de març de 1845 - Halle, 6 de gener de 1918) fou un matemàtic i filòsof alemany, fundador de la teoria de conjunts moderna.

Veure Conjunt numerable і Georg Cantor

Hotel infinit

La paradoxa de Hilbert de l'hotel infinit és una faula inventada pel matemàtic David Hilbert per tal d'il·lustrar les aparents contradiccions que apareixen en tractar amb conjunts infinits.

Veure Conjunt numerable і Hotel infinit

Journal de Crelle

El Journal für die reine und angewandte Mathematik, en català: Revista de Matemàtiques pures i aplicades, més conegut com a Journal de Crelle, és una revista matemàtica fundada el 1826 per August Leopold Crelle.

Veure Conjunt numerable і Journal de Crelle

Julius Wilhelm Richard Dedekind

va ser un matemàtic alemany que va exercir una forta influència en els matemàtics posteriors, sobretot en el camp de la teoria de nombres, l'àlgebra abstracta (particularment la teoria dels anells) i els fonaments axiomàtics de l'aritmètica.

Veure Conjunt numerable і Julius Wilhelm Richard Dedekind

Leopold Kronecker

Leopold Kronecker (Liegnitz, actual Legnica, Polònia, 7 de desembre de 1823 - Berlín, Alemanya, 29 de desembre de 1891) fou un matemàtic alemany.

Veure Conjunt numerable і Leopold Kronecker

Matemàtiques

Representacions matemàtiques de diversos camps La matemàtica (encara que, per a referir-se, a l'estudi i ciència, s'acostuma a utilitzar el plural matemàtiques) és aquella ciència que estudia patrons en les estructures de cossos abstractes i en les relacions que s'estableixen entre ells (del mot derivat del grec μάθημα, máthēma: ciència, coneixement, aprenentatge; μαθηματικός, mathēmatikós).

Veure Conjunt numerable і Matemàtiques

Nombre algebraic

En matemàtiques, un nombre algebraic és un nombre real o complex que és arrel d'un polinomi no nul amb coeficients racionals (o equivalentment enters).

Veure Conjunt numerable і Nombre algebraic

Nombre cardinal

En matemàtiques, els nombres cardinals, o senzillament cardinals, són els nombres usats per a expressar la quantitat d'elements d'un conjunt.

Veure Conjunt numerable і Nombre cardinal

Nombre de Liouville

En teoria de nombres, un nombre de Liouville és un nombre real x amb la propietat que, per a qualsevol enter positiu n, existeixen altres dos sencers p i q tals que q > 1 i que també satisfan: Gràcies a les fraccions contínues sabem que tot nombre real pot aproximar-se per infinits racionals p/q que verifiquen 0 Com a conseqüència d'això (utilitzant el teorema de Baire i que els reals formen un espai mètric complet) es deduix que aquest conjunt és no numerable i dens en els reals.

Veure Conjunt numerable і Nombre de Liouville

Nombre natural

Un nombre natural és qualsevol dels nombres 0, 1, 2, 3…, 19, 20, 21..., que es poden utilitzar per a comptar els elements d'un conjunt finit.

Veure Conjunt numerable і Nombre natural

Nombre ordinal

Els nombres ordinals, o senzillament ordinals, són nombres usats per a denotar la posició en una successió ordenada: primer, segon, tercer, quart, etc.

Veure Conjunt numerable і Nombre ordinal

Nombre parell

275x275px Un nombre parell és un nombre enter múltiple de 2, és a dir, un nombre enter, m, és nombre parell si i només si existeix un altre nombre enter, n, tal que: A la pràctica això vol dir que és parell tot nombre enter que acabi en els nombres 2, 4, 6, 8 i 0 (en base 10).

Veure Conjunt numerable і Nombre parell

Nombre real

En matemàtiques, els nombres reals (\R) informalment es poden concebre com els nombres associats a longituds o qualsevol mena de magnitud física que se suposa que és contínua.

Veure Conjunt numerable і Nombre real

Nombre transcendent

Un nombre transcendent, en matemàtiques, és aquell (real o complex) que no és arrel de cap polinomi (no nul) amb coeficients enters.

Veure Conjunt numerable і Nombre transcendent

Teoria de conjunts

La teoria de conjunts és la branca de les matemàtiques que estudia els conjunts.

Veure Conjunt numerable і Teoria de conjunts

Teoria de la mesura

De manera informal es pot dir que una mesura és una aplicació que fa correspondre els conjunts amb nombres positius que representen la seva grandària. Això ho fa de tal manera que, si un conjunt A és subconjunt d'un altre B, a A li fa correspondre un nombre més petit que a B.

Veure Conjunt numerable і Teoria de la mesura

Topologia

Una ''cinta de Möbius'', un objecte amb només una superfície i una vora. Aquest tipus d'estructures són objecte de l'estudi de la topologia. La topologia (del Grec topos, lloc i logos, ciència) és una branca de les matemàtiques que estudia les propietats espacials i les deformacions bicontínues (dues dimensions) de l'espai.

Veure Conjunt numerable і Topologia

També conegut com Numerable.