Taula de continguts
6 les relacions: Anell commutatiu, Anell de polinomis, Anell factorial, Anell noetherià, Cos de descomposició, Teoria de nombres algebraics.
Anell commutatiu
En teoria d'anells (una branca de l'àlgebra abstracta), un anell commutatiu és un anell (R, +, ·) en què l'operació de multiplicació · és commutativa, és a dir, si per qualsevol a,b\in R, a\cdot b.
Veure Element irreductible і Anell commutatiu
Anell de polinomis
En matemàtiques, especialment en el camp de l'àlgebra abstracta, un anell de polinomis o àlgebra de polinomis és un anell (que també és una àlgebra commutativa) format a partir del conjunt de polinomis en una o més variables (o indeterminades) amb coeficients en un altre anell, sovint un cos.
Veure Element irreductible і Anell de polinomis
Anell factorial
Un anell factorial (també dit anell de factorització única o domini de factorització única) és un anell íntegre en què tot element descompon de forma única com a producte de primers, és a dir, un anell on es compleix una versió anàloga del teorema fonamental de l'aritmètica.
Veure Element irreductible і Anell factorial
Anell noetherià
En àlgebra abstracta, un anell noetherià és un anell commutatiu i unitari que satisfà que la cadena d'ideals és estacionària.
Veure Element irreductible і Anell noetherià
Cos de descomposició
En matemàtiques i més precisament en àlgebra en la teoria de Galois, el cos de descomposició d'un polinomi P(X) és l'extensió de cos més petita que conté totes les arrels de P(X).
Veure Element irreductible і Cos de descomposició
Teoria de nombres algebraics
Portada de la primera edició de Disquisitiones arithmeticae, una de les obres originàries de la teoria de nombres algebraics moderna La teoria dels nombres algebraics és una branca de la teoria de nombres en què el concepte de nombre s'estén al de nombres algebraics, que són les arrels dels polinomis no nuls amb coeficients racionals.