Logo
Uniopèdia
Comunicació
Disponible a Google Play
Nou! Descarregar Uniopèdia al dispositiu Android™!
Gratis
Accés més ràpid que el navegador!
 

Espai vectorial

Índex Espai vectorial

'''v''' + 2·'''w'''. Un espai vectorial és, en matemàtiques, i més concretament en àlgebra lineal, una estructura algebraica formada per un conjunt de vectors.

230 les relacions: Acció (matemàtiques), Alemany, Algorisme de multiplicació, Anàlisi funcional, Anàlisi matemàtica, Anell (matemàtiques), Anell commutatiu, Anell de polinomis, Anell quocient, Anglès, Angle, Aplicació lineal, Aproximació lineal, Aritmètica modular, Arrel d'una funció, Arthur Cayley, August Ferdinand Möbius, Axioma, Axioma de l'elecció, Base canònica, Bernard Bolzano, Camp vectorial, Ciència, Cilindre, Cinta de Möbius, Classe lateral, Clausura topològica, Codificador de veu, Coeficient, Combinació lineal, Commutador de dos operadors, Composició de funcions, Conjugat, Conjunt, Convergència uniforme, Convolució, Corba, Cos (matemàtiques), Covector, Cristall, Curvatura, David Hilbert, Delta de Dirac, Derivada, Descomposició de Jordan–Chevalley, Desigualtat de Minkowski, Desigualtat triangular, Determinant (matemàtiques), Dimensió, Dimensió d'un espai vectorial, ..., Distància, Domini (matemàtiques), Dualitat de Pontryagin, Edmond Laguerre, Element neutre, Endomorfisme, Energia, Enginyeria, Equació de Schrödinger, Equació diferencial, Equació diferencial en derivades parcials, Equació diferencial ordinària, Escalar, Esfera, Espai complet, Espai de Banach, Espai de Hilbert, Espai euclidià, Espai funcional, Espai Lp, Espai tangent, Espai topològic, Espai vectorial generat, Espai vectorial quocient, Espai vectorial topològic, Espaitemps, Espectre de freqüències, Estructura algebraica, Estructura lineal dual, Extensió de cossos, Física, Fibrat cotangent, Fibrat tangent, Filtre digital, Força, Forma canònica de Jordan, Forma diferencial, Frontera (topologia), Funció, Funció bijectiva, Funció característica (matemàtiques), Funció contínua, Funció d'ones, Funció de Green, Funció derivable, Funció exhaustiva, Funció exponencial, Funció identitat, Funció injectiva, Funció inversa, Funció trigonomètrica, Funcional (matemàtiques), Gairebé pertot, Geometria, Geometria afí, Geometria algebraica, Geometria analítica, Giuseppe Peano, Giusto Bellavitis, Grup (matemàtiques), Grup abelià, Henri Léon Lebesgue, Hermann Grassmann, Homeomorfisme, Identitat de Jacobi, Imatge (matemàtiques), Independència lineal, Integració, Integral de Lebesgue, Integral de Riemann, Interval (matemàtiques), Isomorfisme, Jean-Baptiste-Joseph Fourier, Jean-Robert Argand, Límit, Lema de Zorn, Linealització, Matemàtiques, Matriu (matemàtiques), Mòdul lliure, Mòdul vectorial, Mecànica quàntica, Morfisme, Mostreig, Multiplicació de matrius, N-pla, Nombre, Nombre algebraic, Nombre cardinal, Nombre complex, Nombre enter, Nombre π, Nombre racional, Nombre real, Nombre transcendent, Norma (matemàtiques), Nucli (matemàtiques), Operador bilineal, Operador compacte, Operador diferencial, Oposat (matemàtiques), Optimització matemàtica, Ortogonal, Paral·lelisme, Parell ordenat, Pierre de Fermat, Pla, Polinomi, Polinomi característic, Polinomi mínim, Principi de superposició, Procés d'ortogonalització de Gram-Schmidt, Processament de senyals, Processament de senyals digitals, Producte cartesià, Producte escalar, Producte vectorial, Propietat anticommutativa, Propietat associativa, Propietat commutativa, Propietat distributiva, Quantitat de moviment, Quaternió, Radar, Recta, Recta real, Relació d'equivalència, Relació d'ordre, Relativitat especial, Relativitat general, René Descartes, Representació de grup, Sèrie (matemàtiques), Sèrie de Fourier, Sèrie de Taylor, Segle XIX, Segle XVII, Si i només si, Sinusoide, Sistema d'equacions lineals, Sistema de coordenades, Stefan Banach, Subconjunt, Successió (matemàtiques), Successió de Cauchy, Sumatori, Taula de símbols matemàtics, Tensor, Teorema de convolució, Teorema de representació de Riesz, Teorema espectral, Teoria de conjunts, Teoria de grups, Teoria de nombres, Teoria de nombres algebraics, Teoria dels jocs, Topologia, Transformada cosinus discreta, Transformada discreta de Fourier, Transformada ràpida de Fourier, Unitat imaginària, Valor propi, vector propi i espai propi, Varietat (matemàtiques), Varietat algebraica, Varietat diferenciable, Varietat riemanniana, Veïnat (matemàtiques), Vector (física), Vector (matemàtiques), Vector nul, William Rowan Hamilton, ZFC, 1636, 1804, 1827, 1844, 1857, 1867, 1888, 1920. Ampliar l'índex (180 més) »

Acció (matemàtiques)

rotació en sentit antihorari de 120° al voltant del centre del triangle aplica cada vèrtex del triangle en un altre vèrtex. El grup cíclic ''C''3 format per les rotacions de 0°, 120° i 240° actua sobre el conjunt dels tres vèrtexs. En matemàtiques, un grup de simetria és una abstracció emprada per descriure les simetries d'un objecte.

Nou!!: Espai vectorial і Acció (matemàtiques) · Veure més »

Alemany

L'alemany (en alemany, Deutsch) és una llengua germànica del grup occidental.

Nou!!: Espai vectorial і Alemany · Veure més »

Algorisme de multiplicació

Un algorisme de multiplicació és un algorisme (o mètode) per multiplicar dos nombres.

Nou!!: Espai vectorial і Algorisme de multiplicació · Veure més »

Anàlisi funcional

Lanàlisi funcional és la branca de les matemàtiques, i específicament de l'anàlisi, que tracta de l'estudi d'espais de funcions.

Nou!!: Espai vectorial і Anàlisi funcional · Veure més »

Anàlisi matemàtica

convergència, la teoria de la mesura, la geometria i la teoria de la probabilitat i l'estadística Lanàlisi matemàtica, o simplement anàlisi (del grec ανάλυσις análysis, 'solució', ἀναλύειν analýein, 'resoldre'), és la branca de les matemàtiques que té per objecte l'estudi de les relacions de dependència d'una variable respecte d'una altra, és a dir, de les funcions.

Nou!!: Espai vectorial і Anàlisi matemàtica · Veure més »

Anell (matemàtiques)

En matemàtiques, un anell és una estructura algebraica formada per un conjunt A d'elements on hi ha definides dues operacions binàries, que anomenarem suma (+) i producte (·) (tot i que no són necessàriament la suma i el producte de nombres reals habituals) i que compleixen les següents propietats.

Nou!!: Espai vectorial і Anell (matemàtiques) · Veure més »

Anell commutatiu

En teoria d'anells (una branca de l'àlgebra abstracta), un anell commutatiu és un anell (R, +, ·) en què l'operació de multiplicació · és commutativa, és a dir, si per qualsevol a, b ∈ R, a · b.

Nou!!: Espai vectorial і Anell commutatiu · Veure més »

Anell de polinomis

En matemàtiques, especialment en el camp de l'àlgebra abstracta, un anell de polinomis o àlgebra de polinomis és un anell (que també és una àlgebra commutativa) format a partir del conjunt de polinomis en una o més variables (o indeterminades) amb coeficients en un altre anell, sovint un cos.

Nou!!: Espai vectorial і Anell de polinomis · Veure més »

Anell quocient

En matemàtiques, un anell quocient respecte d'un ideal és el conjunt quocient de les classes d'equivalència dels elements tals que la seva resta pertany a l'ideal.

Nou!!: Espai vectorial і Anell quocient · Veure més »

Anglès

L'anglès o anglés és la tercera llengua més parlada del món, així com la més utilitzada internacionalment com a segona llengua.

Nou!!: Espai vectorial і Anglès · Veure més »

Angle

∠, el símbol Unicode per a l'angle és l''''U+2220''' En geometria, un angle és una figura geomètrica formada per dues semirectes d'origen comú (el vèrtex de l'angle).

Nou!!: Espai vectorial і Angle · Veure més »

Aplicació lineal

En matemàtiques, una aplicació lineal és un morfisme entre dos espais vectorials que respecta l'operació suma de vectors i la multiplicació escalar definides en aquests espais vectorials, o, en altres paraules que preserven les combinacions lineals.

Nou!!: Espai vectorial і Aplicació lineal · Veure més »

Aproximació lineal

Recta tangent a (''a'', ''f''(''a'')) En matemàtiques, una aproximació lineal és una aproximació d'una funció qualsevol fent servir una funció lineal (de forma més precisa una funció afí).

Nou!!: Espai vectorial і Aproximació lineal · Veure més »

Aritmètica modular

Gauss, llibre fundador de l'aritmètica modular. En matemàtiques, i més concretament en teoria de nombres algebraics, l'aritmètica modular és un conjunt de mètodes que permeten la resolució de problemes sobre els nombres enters.

Nou!!: Espai vectorial і Aritmètica modular · Veure més »

Arrel d'una funció

Una arrel d'una funció f(x) és un element x del domini d'aquesta funció tal que Per aquesta raó a vegades també s'anomenen zeros de la funció.

Nou!!: Espai vectorial і Arrel d'una funció · Veure més »

Arthur Cayley

Arthur Cayley (Richmond, Surrey, 16 d'agost de 1821 - Cambridge, 26 de gener de 1895) fou un matemàtic britànic.

Nou!!: Espai vectorial і Arthur Cayley · Veure més »

August Ferdinand Möbius

Dibuix d'una típica cinta de Möbius August Ferdinand Möbius (Schulpforta, Saxònia, Alemanya, 17 de novembre de 1790 – Leipzig, 26 de setembre de 1868) va ser un matemàtic alemany i astrònom teòric.

Nou!!: Espai vectorial і August Ferdinand Möbius · Veure més »

Axioma

Un axioma tradicionalment és un argument que, o bé és totalment cert per si mateix, o bé com a mínim segons els coneixements actuals es pot donar per innegable.

Nou!!: Espai vectorial і Axioma · Veure més »

Axioma de l'elecció

L'axioma de l'elecció (AE) és un axioma de la teoria de conjunts.

Nou!!: Espai vectorial і Axioma de l'elecció · Veure més »

Base canònica

Una base canònica és la base d'un espai vectorial formada per únicament per vectors de mòdul unitari (base normal) i linealment independents entre ells.

Nou!!: Espai vectorial і Base canònica · Veure més »

Bernard Bolzano

Bernard Placidus Johann Nepomuk Bolzano (Praga, Bohèmia (actual República Txeca), 5 d'octubre de 1781 - ídem, 18 de desembre de 1848), conegut com a Bernard Bolzano va ser un matemàtic, lògic, filòsof i teòleg bohemi que va escriure en alemany i que va realitzar importants contribucions a les matemàtiques i a la Teoria del coneixement.

Nou!!: Espai vectorial і Bernard Bolzano · Veure més »

Camp vectorial

conservatiu el rotacional no s'anul En matemàtica un camp vectorial és una construcció del càlcul vectorial, que associa un vector a cada punt de l'espai euclidià, de la forma \varphi:\R^n\to\R^m.

Nou!!: Espai vectorial і Camp vectorial · Veure més »

Ciència

La ciència (del llatí scientia) és, etimològicament, un conjunt de coneixements dels principis i les causes obtingudes per mitjà del raonament.

Nou!!: Espai vectorial і Ciència · Veure més »

Cilindre

Un cilindre de radi ''r'' i altura ''h'' Un cilindre és un cos sòlid, generat a partir de la revolució d'un rectangle, en què l'eix de revolució és un costat del rectangle.

Nou!!: Espai vectorial і Cilindre · Veure més »

Cinta de Möbius

Cinta de Möbius feta amb una tira de paper Una cinta de Möbius o banda de Möbius (o de Moebius) és una superfície d'una sola cara i un sol contorn.

Nou!!: Espai vectorial і Cinta de Möbius · Veure més »

Classe lateral

En matemàtiques, si G és un grup, H és un subgrup de G, i g és un element de G, llavors Només quan H és normal coincideixen les classes laterals per la dreta i per l'esquerra, de fet, aquesta és una definició de subgrup normal.

Nou!!: Espai vectorial і Classe lateral · Veure més »

Clausura topològica

En un espai topològic X la clausura o adherència d'un subconjunt E és el conjunt de tots els punts d'E més els punts límits de S.

Nou!!: Espai vectorial і Clausura topològica · Veure més »

Codificador de veu

La codificació de veu és el procés que permet transformar un senyal de veu analògic (combinació de múltiples ones sonores) en un conjunt de dígits binaris o senyal digital.

Nou!!: Espai vectorial і Codificador de veu · Veure més »

Coeficient

En matemàtiques, un coeficient és un factor constant que multiplica determinat objecte.

Nou!!: Espai vectorial і Coeficient · Veure més »

Combinació lineal

Un vector \ x es diu que és combinació lineal d'un conjunt de vectors \ A.

Nou!!: Espai vectorial і Combinació lineal · Veure més »

Commutador de dos operadors

Es defineix com commutador de dos operadors lineals \hat i \hat, definits sobre un mateix domini dens de cert espai de Hilbert, com un nou operador definit per la diferència del producte d'operadors: Aquesta definició és anàloga a la noció general de commutador de dos elements d'una àlgebra, però cal parar atenció que en aquest cas es tracta d'operadors que potser no estan definits arreu.

Nou!!: Espai vectorial і Commutador de dos operadors · Veure més »

Composició de funcions

En matemàtiques, la funció composició és l'aplicació d'una funció al resultat d'una altra.

Nou!!: Espai vectorial і Composició de funcions · Veure més »

Conjugat

En matemàtiques, el conjugat d'un nombre complex z és el nombre complex format de la mateixa part real que z i de la part imaginària oposada.

Nou!!: Espai vectorial і Conjugat · Veure més »

Conjunt

Segons el diccionari de l'Institut d'Estudis Catalans, en matemàtiques un conjunt és una reunió d'objectes ben definits en la intuïció o en el pensament, considerada com una totalitat.

Nou!!: Espai vectorial і Conjunt · Veure més »

Convergència uniforme

La convergència uniforme és un concepte propi de l'anàlisi matemàtica, sobretot de l'anàlisi real, introduït per salvar les mancances de la convergència puntual en successions de funcions.

Nou!!: Espai vectorial і Convergència uniforme · Veure més »

Convolució

Convolució de dos polsos quadrats (La funció resultant acaba sent un pols triangular) Convolució d'un pols qauadrat (com a senyal d'entrada) amb la resposta l'impuls d'un condensador per a obtenir el senyal de sortida (resposta del condensador a aquest senyal) La convolució és una operació matemàtica que transforma dues funcions en una tercera funció que representa la magnitud de superposició de les dues funcions originals.

Nou!!: Espai vectorial і Convolució · Veure més »

Corba

Corba és un terme abstracte que s'usa per descriure el camí d'un punt mogut contínuament.

Nou!!: Espai vectorial і Corba · Veure més »

Cos (matemàtiques)

En l'àlgebra abstracta, un cos és un sistema algebraic en què és possible efectuar la suma, resta, multiplicació i divisió (llevat de la divisió per 0), i en la qual se satisfan certes lleis.

Nou!!: Espai vectorial і Cos (matemàtiques) · Veure més »

Covector

S'anomenen covectors o 1-forma les formes lineals d'un espai vectorial.

Nou!!: Espai vectorial і Covector · Veure més »

Cristall

Cristall de bismut Un cristall és una forma sòlida, en què els constituents, àtoms, molècules, o ions, estan empaquetats de manera ordenada i amb patrons de repetició que s'estenen en les tres dimensions espacials.

Nou!!: Espai vectorial і Cristall · Veure més »

Curvatura

En geometria, la curvatura és la qualitat d'una corba associada al canvi de direcció de diversos punts successius de la corba.

Nou!!: Espai vectorial і Curvatura · Veure més »

David Hilbert

David Hilbert (Königsberg, Prússia Oriental, 23 de gener de 1862 – Göttingen, Alemanya, 14 de febrer de 1943) va ser un matemàtic alemany.

Nou!!: Espai vectorial і David Hilbert · Veure més »

Delta de Dirac

Representació de la distribució δ(''x'') de Dirac. La delta de Dirac o funció d'impuls, introduïda per primera vegada pel físic anglès Paul Dirac, es pot considerar una funció generalitzada δ(x) que té un valor infinit per a x.

Nou!!: Espai vectorial і Delta de Dirac · Veure més »

Derivada

pendent de la recta que és tangent a la corba. La recta de color vermell és sempre tangent a la corba blava; el seu pendent és la derivada. En càlcul infinitesimal, la derivada és una mesura de com canvia una funció en modificar el valor de les seves variables.

Nou!!: Espai vectorial і Derivada · Veure més »

Descomposició de Jordan–Chevalley

En matemàtiques, la descomposició de Jordan-Chevalley, que pren el nom de Camille Jordan i Claude Chevalley, expressa una aplicació lineal com suma commutativa de les seves parts semisimple i nilpotent.

Nou!!: Espai vectorial і Descomposició de Jordan–Chevalley · Veure més »

Desigualtat de Minkowski

En anàlisi matemàtica, la desigualtat de Minkowski estableix que els espais L''p'' són espais vectorials amb una norma.

Nou!!: Espai vectorial і Desigualtat de Minkowski · Veure més »

Desigualtat triangular

Desigualtat del triangle El teorema de desigualtat triangular afirma que en qualsevol triangle la longitud d'un dels costats no pot mai superar a la suma de les longituds dels altres dos.

Nou!!: Espai vectorial і Desigualtat triangular · Veure més »

Determinant (matemàtiques)

L'àrea del paral·lelogram és el valor absolut del determinant de la matriu formada pels vectors que representen els costats del paral·lelogram. En matemàtiques, el determinant és una eina molt potent en nombrosos dominis (estudi d'endomorfismes, recerca de valors propis, càlcul diferencial).

Nou!!: Espai vectorial і Determinant (matemàtiques) · Veure més »

Dimensió

Aquests dibuixos representen diferents objectes segons les seves dimensions Una dimensió d'un element és, en àlgebra i geometria, el nombre de valors propis independents que té la matriu que el caracteritza.

Nou!!: Espai vectorial і Dimensió · Veure més »

Dimensió d'un espai vectorial

En matemàtiques, la dimensió d'un espai vectorial E és el cardinal (és a dir el nombre de vectors) de tota base d'E (és a dir tot conjunt de vectors tal que qualsevol vector de l'espai es pot expressar de forma única com la suma dels vectors de la base multiplicats cada un per una constant diferent).

Nou!!: Espai vectorial і Dimensió d'un espai vectorial · Veure més »

Distància

La distància és la longitud del camí més curt entre dues entitats.

Nou!!: Espai vectorial і Distància · Veure més »

Domini (matemàtiques)

En matemàtiques, el domini d'una funció matemàtica \,f: X \to Y és el conjunt dels valors de \,X pels quals la funció està definida.

Nou!!: Espai vectorial і Domini (matemàtiques) · Veure més »

Dualitat de Pontryagin

En matemàtiques, en particular en l'anàlisi harmònica i la teoria de grups topològics, la dualitat de Pontryagin explica les propietats generals de la transformada de Fourier.

Nou!!: Espai vectorial і Dualitat de Pontryagin · Veure més »

Edmond Laguerre

Edmond Nicolas Laguerre (Bar-le-Duc, 9 d'abril de 1834 – Bar-le-Duc, 14 d'agost de 1886) fou un matemàtic francès, membre de l'Acadèmia Francesa (1885).

Nou!!: Espai vectorial і Edmond Laguerre · Veure més »

Element neutre

L'element neutre, d'una operació, en un conjunt C, és un element e \in C que operat amb qualsevol altre element a de C, no l'altera, és a dir: a * e.

Nou!!: Espai vectorial і Element neutre · Veure més »

Endomorfisme

En matemàtiques, un endomorfisme és un morfisme que té com a codomini el mateix conjunt que el seu domini.

Nou!!: Espai vectorial і Endomorfisme · Veure més »

Energia

Lenergia és una magnitud física que és un atribut present en qualsevol sistema físic i que es pot manifestar en forma de treball útil, de calor, de llum o altres maneres.

Nou!!: Espai vectorial і Energia · Veure més »

Enginyeria

Un motor F-15 Eagle Pratt & Whitney F100 turbofan dissenyat per enginyers aerospacials L'enginyeria és l'aplicació pràctica de la ciència i la tecnologia.

Nou!!: Espai vectorial і Enginyeria · Veure més »

Equació de Schrödinger

En física, especialment en mecànica quàntica, lequació de Schrödinger és una equació que descriu com canvia al llarg del temps l'estat quàntic d'un sistema físic.

Nou!!: Espai vectorial і Equació de Schrödinger · Veure més »

Equació diferencial

En matemàtiques, una equació diferencial és una equació funcional entre una o diverses funcions desconegudes i les seves funcions derivades.

Nou!!: Espai vectorial і Equació diferencial · Veure més »

Equació diferencial en derivades parcials

En matemàtiques, una equació diferencial en derivades parcials és una equació que relaciona les derivades parcials d'una funció de diverses variables.

Nou!!: Espai vectorial і Equació diferencial en derivades parcials · Veure més »

Equació diferencial ordinària

En matemàtiques, una equació diferencial ordinària (o EDO) és una equació que inclou les derivades d'una funció d'una sola variable.

Nou!!: Espai vectorial і Equació diferencial ordinària · Veure més »

Escalar

Matemàticament, un escalar és un nombre real, complex o racional.

Nou!!: Espai vectorial і Escalar · Veure més »

Esfera

En geometria, una esfera és la superfície formada per tots els punts que es troben a una mateixa distància (anomenada radi) d'un punt donat (anomenat centre) de l'espai.

Nou!!: Espai vectorial і Esfera · Veure més »

Espai complet

Dins l'entorn de l'anàlisi matemàtica un espai mètric (X, d) es diu que és complet si tota successió de Cauchy convergeix, és a dir, hi ha un element de l'espai que és el límit de la successió.

Nou!!: Espai vectorial і Espai complet · Veure més »

Espai de Banach

En matemàtiques, un espai de Banach és un espai vectorial normat i complet.

Nou!!: Espai vectorial і Espai de Banach · Veure més »

Espai de Hilbert

En matemàtiques, el concepte d'espai de Hilbert és una generalització del concepte d'espai euclidià.

Nou!!: Espai vectorial і Espai de Hilbert · Veure més »

Espai euclidià

Un espai euclidià és un espai vectorial normat de dimensió finita, en què la norma és heretada d'un producte escalar.

Nou!!: Espai vectorial і Espai euclidià · Veure més »

Espai funcional

En matemàtiques, un espai funcional és un conjunt d'aplicacions d'una certa forma d'un conjunt X en un conjunt Y. S'anomena espai perquè segons els casos pot ser un espai topològic o un espai vectorial o els dos.

Nou!!: Espai vectorial і Espai funcional · Veure més »

Espai Lp

En matemàtiques, els espais Lp són certs espais funcionals definits a partir de generalitzacions naturals de les p-normes dels espais vectorials de dimensió finita.

Nou!!: Espai vectorial і Espai Lp · Veure més »

Espai tangent

En matemàtiques, lespai tangent d'una varietat és un concepte que facilita la generalització de vectors des d'espais afins a varietats generals, ja que en l'últim cas no es pot simplement restar dos punts per obtenir un vector que apunti de l'un a l'altre.

Nou!!: Espai vectorial і Espai tangent · Veure més »

Espai topològic

Els espais topològics són els principals objectes de treball en la disciplina matemàtica de la topologia.

Nou!!: Espai vectorial і Espai topològic · Veure més »

Espai vectorial generat

En el camp matemàtic de l'àlgebra lineal, i més específicament en anàlisi funcional, l'espai vectorial generat per un conjunt de vectors d'un espai vectorial és la intersecció de tots els subespais que contenen el conjunt.

Nou!!: Espai vectorial і Espai vectorial generat · Veure més »

Espai vectorial quocient

En àlgebra lineal, l'espai vectorial quocient d'un espai vectorial V per un subespai N s'obté "col·lapsant" N a zero.

Nou!!: Espai vectorial і Espai vectorial quocient · Veure més »

Espai vectorial topològic

En matemàtiques, un espai vectorial topològic és una estructura bàsica que combina l'estructura algebraica d'un espai vectorial amb una estructura topològica.

Nou!!: Espai vectorial і Espai vectorial topològic · Veure més »

Espaitemps

L'espaitemps és un concepte introduït per Hermann Minkowski el 1908, que fusiona el temps i l'espai absoluts de Newton en una nova entitat de quatre dimensions, les tres ordinàries de l'espai amb la quarta del temps.

Nou!!: Espai vectorial і Espaitemps · Veure més »

Espectre de freqüències

Espectre de freqüències per a la llum emesa per àtoms de ferro en la regió visible de l'espectre electromagnètic Lespectre de freqüència d'un fenomen ondulatori (sonor, lluminós o electromagnètic), superposició d'ones de diverses freqüències, és una mesura de la distribució d'amplituds de cada freqüència.

Nou!!: Espai vectorial і Espectre de freqüències · Veure més »

Estructura algebraica

Una estructura algebraica és un conjunt d'elements amb unes propietats operacionals determinades.

Nou!!: Espai vectorial і Estructura algebraica · Veure més »

Estructura lineal dual

El mòdul dual i l'espai dual d'una estructura lineal bàsica (mòdul sobre un anell i espai vectorial sobre un cos, respectivament) és el conjunt de les seves formes lineals, juntament amb la seva estructura lineal corresponent.

Nou!!: Espai vectorial і Estructura lineal dual · Veure més »

Extensió de cossos

En àlgebra, les extensions de cos són el problema fonamental de la teoria de cossos.

Nou!!: Espai vectorial і Extensió de cossos · Veure més »

Física

La física (del grec φυσικός (phusikos), 'natural' i φύσις (phusis), 'natura') és la ciència que estudia la natura en el seu sentit més ampli, ocupant-se del comportament de la matèria i l'energia, i de les forces fonamentals de la natura que governen les interaccions entre les partícules.

Nou!!: Espai vectorial і Física · Veure més »

Fibrat cotangent

En geometria diferencial, el fibrat cotangent d'una varietat és la unió de tots els espais cotangents a cada punt de la varietat.

Nou!!: Espai vectorial і Fibrat cotangent · Veure més »

Fibrat tangent

En matemàtiques, el fibrat tangent d'una varietat és la unió disjunta de tots els espais tangents en cada punt de la varietat.

Nou!!: Espai vectorial і Fibrat tangent · Veure més »

Filtre digital

FIR Un filtre digital és un filtre electrònic que, depenent de les variacions dels senyals d'entrada en el temps i amplitud, es realitza un processament matemàtic sobre aquest senyal; generalment mitjançant l'ús de la Transformada ràpida de Fourier; obtenint-se en l'eixida el resultat del processament matemàtic o el senyal d'eixida.

Nou!!: Espai vectorial і Filtre digital · Veure més »

Força

En física, una força (habitualment simbolitzada com F) és una acció que provoca una pertorbació en la quantitat de moviment d'un cos.

Nou!!: Espai vectorial і Força · Veure més »

Forma canònica de Jordan

blocs de Jordan i només tenen diferents de zero els valors de la diagonal (els valors propis) i els que queden immediatament per damunt (aquests valen 1). La resta d'elements de la matriu, fora dels blocs de Jordan, són tots zero (aquí representats amb espais en blanc). La forma canònica de Jordan o forma normal de Jordan és un terme matemàtic utilitzat en àlgebra lineal.

Nou!!: Espai vectorial і Forma canònica de Jordan · Veure més »

Forma diferencial

En geometria diferencial, és un objecte matemàtic pertanyent a un espai vectorial que apareix en el càlcul multivariable, càlcul tensorial o en física.

Nou!!: Espai vectorial і Forma diferencial · Veure més »

Frontera (topologia)

Un conjunt (blau clar) i la seva frontera (blau fosc) En topologia i matemàtiques en general, la frontera d'un subconjunt S d'un espai topològic X és el conjunt de punts als quals hom s'hi pot aproximar tant des dS com des de fora dS.

Nou!!: Espai vectorial і Frontera (topologia) · Veure més »

Funció

parells ordenats (''x'',''f''(''x'')). Intuïtivament, una funció és una «transformació» d'un objecte en un altre objecte.

Nou!!: Espai vectorial і Funció · Veure més »

Funció bijectiva

Una funció bijectiva. En matemàtiques, una funció o aplicació bijectiva també anomenada simplement una bijecció és una funció f d'un conjunt X a un conjunt Y (f:X → Y) amb la propietat que per a cada y de Y hi ha exactament un x de X tal que f(x).

Nou!!: Espai vectorial і Funció bijectiva · Veure més »

Funció característica (matemàtiques)

En matemàtiques, la funció característica o funció indicatriu és una funció definida en un conjunt X que indica la pertinença d'un element al subconjunt A de X, assignant el valor 1 per a tots els elements de A i el valor 0 per a tots els elements de X que no formen part de A. És, doncs, una funció definida a trossos per la pertinença o no a A de qualsevol element de X.

Nou!!: Espai vectorial і Funció característica (matemàtiques) · Veure més »

Funció contínua

Funció contínua és un terme utilitzat en matemàtiques i, en particular, en topologia.

Nou!!: Espai vectorial і Funció contínua · Veure més »

Funció d'ones

Funció d'ona per a una partícula bidimensional tancada en una caixa; les línies de nivell sobre el plànol inferior estan relacionades amb la probabilitat de presència En mecànica quàntica, una funció d'ona (Ψ) és una forma de descriure l'estat físic d'un sistema de partícules.

Nou!!: Espai vectorial і Funció d'ones · Veure més »

Funció de Green

En matemàtiques, una funció de Green és un tipus de funció utilitzada com a nucli d'un operador lineal integral i usada en la resolució d'equacions diferencials no homogènies amb condicions de contorn especificades.

Nou!!: Espai vectorial і Funció de Green · Veure més »

Funció derivable

En càlcul infinitesimal es diu que una funció real és derivable en a quan el límit existeix i és finit.

Nou!!: Espai vectorial і Funció derivable · Veure més »

Funció exhaustiva

Una funció exhaustiva. Una altra funció exhaustiva. Una funció que '''no és''' exhaustiva. Composició exhaustiva: la primera funció no cal que sigui exhaustiva. En matemàtiques, es diu que una funció f entre dos conjunts és exhaustiva (també dita epijectiva, suprajectiva o surjectiva) quan tot element del conjunt d'arribada és imatge d'almenys un element del domini.

Nou!!: Espai vectorial і Funció exhaustiva · Veure més »

Funció exponencial

En sentit ampli, una funció exponencial és qualsevol funció del tipus ax, una potenciació on la base a és qualsevol nombre real positiu i l'exponent x és la variable.

Nou!!: Espai vectorial і Funció exponencial · Veure més »

Funció identitat

En matemàtiques, una funció identitat, anomenada també aplicació identitat o transformació identitat, és una funció que sempre retorna el mateix valor que s'ha fet servir com a argument.

Nou!!: Espai vectorial і Funció identitat · Veure més »

Funció injectiva

Exemple de funció injectiva. Exemple de funció no injectiva, l'element ''C'' de la imatge té dues antiimatges (3 i 4). En matemàtiques es diu que una funció és injectiva quan cada imatge de la funció (cada element del conjunt recorregut) es correspon a una antiimatge diferent del conjunt de sortida (el domini).

Nou!!: Espai vectorial і Funció injectiva · Veure més »

Funció inversa

Una funció ƒ i la seva inversa ƒ–1. Com que ƒ fa correspondre a 3 l'element "a", la inversa ƒ–1 fa correspondre l'element ''a'' a 3. En matemàtiques, si ƒ és una funció de A a B llavors la funció inversa de ƒ, anomenada com a ƒ−1, és una funció en la direcció contrària, de B a A, amb la propietat de què la seva (composició) amb la funció original retorna cada element a si mateix.

Nou!!: Espai vectorial і Funció inversa · Veure més »

Funció trigonomètrica

Totes les funcions trigonomètriques d'un angle θ es poden construir geomètricament en termes de la circumferència goniomètrica. En matemàtiques, les funcions trigonomètriques són funcions d'un angle.

Nou!!: Espai vectorial і Funció trigonomètrica · Veure més »

Funcional (matemàtiques)

En matemàtiques, i particularment en anàlisi funcional i càlcul de variacions, un funcional és una funció des d'un espai vectorial al seu camp escalar subjacent, o un conjunt de funcions dels nombres reals.

Nou!!: Espai vectorial і Funcional (matemàtiques) · Veure més »

Gairebé pertot

En anàlisi matemàtica, i més específicament en teoria de la mesura, es diu que una propietat es compleix gairebé pertot si el conjunt d'elements per als quals no es compleix la propietat és en certa manera negligible; en termes tècnics, quan és un conjunt de mesura nul·la (Halmos 1974).

Nou!!: Espai vectorial і Gairebé pertot · Veure més »

Geometria

Geometria plana La geometria (del grec γεωμετρία; γη.

Nou!!: Espai vectorial і Geometria · Veure més »

Geometria afí

La geometria afí és la geometria dels espai afins.

Nou!!: Espai vectorial і Geometria afí · Veure més »

Geometria algebraica

La geometria algebraica és una branca de les matemàtiques que combina l'àlgebra abstracta, especialment l'àlgebra commutativa, amb la geometria.

Nou!!: Espai vectorial і Geometria algebraica · Veure més »

Geometria analítica

La geometria analítica és la part de les matemàtiques que fa ús de l'àlgebra per descriure i analitzar figures geomètriques.

Nou!!: Espai vectorial і Geometria analítica · Veure més »

Giuseppe Peano

Giuseppe Peano (27 d'agost, 1858 – 20 d'abril, 1932) va ser un matemàtic i filòsof italià, conegut per les seves contribucions a la teoria de conjunts.

Nou!!: Espai vectorial і Giuseppe Peano · Veure més »

Giusto Bellavitis

Giusto Bellavitis (1803-1880) fou un matemàtic italià.

Nou!!: Espai vectorial і Giusto Bellavitis · Veure més »

Grup (matemàtiques)

Un grup és una estructura algebraica formada per un conjunt G d'elements on hi ha definida una operació binària, com pot ser la suma o el producte, i que compleix unes propietats determinades que es detallaran més endavant.

Nou!!: Espai vectorial і Grup (matemàtiques) · Veure més »

Grup abelià

En una estructura algebraica sobre un conjunt A, en la qual hem definit una operació o llei de composició interna binària " \circ ", diem que presenta estructura (A, \circ) de grup abelià o grup commutatiu respecte a l'operació \circ si...

Nou!!: Espai vectorial і Grup abelià · Veure més »

Henri Léon Lebesgue

222px Henri-Léon Lebesgue (Beauvais, 28 de juny de 1875 - París, 26 de juliol de 1941) va ser un matemàtic francès conegut sobretot per la seva aportació a la teoria del càlcul integral.

Nou!!: Espai vectorial і Henri Léon Lebesgue · Veure més »

Hermann Grassmann

Hermann Günther Grassmann (Stettin, 15 d'abril de 1809 - 26 de setembre de 1877) fou un lingüista i matemàtic alemany.

Nou!!: Espai vectorial і Hermann Grassmann · Veure més »

Homeomorfisme

En matemàtiques, i més precisament en topologia, un homeomorfisme és un isomorfisme topològic; és a dir, una aplicació entre dos espais topològics que en preserva les respectives topologies.

Nou!!: Espai vectorial і Homeomorfisme · Veure més »

Identitat de Jacobi

Si es defineix el commutador de dos operadors A i B com La identitat de Jacobi és el nom de l'equació següent, anomenada així en honor a Carl Gustav Jacob Jacobi: Les àlgebres de Lie són l'exemple primari d'una àlgebra que satisfà la identitat de Jacobi.

Nou!!: Espai vectorial і Identitat de Jacobi · Veure més »

Imatge (matemàtiques)

Siguin X i Y dos conjunts, f una funció f: X → Y, i x un element de X. Diem que la imatge de x sota f, denotada f(x), és l'element únic y de Y que f associa amb x. La imatge d'un subconjunt A ⊆ X sota f denotada f(A) és el subconjunt de Y definit com Per extensió, la imatge de la funció f anomenat també el seu recorregut és la imatge del conjunt domini de la funció f. Per contra, sigui f: X → Y una funció i B un subconjunt de Y, es diu antiimatge de B per f el subconjunt de X definit com A vegades es nota aquest concepte f −1 per a fer distinció amb la notació de la funció inversa de f. De fet, tot i que les dues funcions coincideixen, evidentment només ho poden fer quan la funció inversa està definida, és a dir quan f és una funció invertible.

Nou!!: Espai vectorial і Imatge (matemàtiques) · Veure més »

Independència lineal

En àlgebra lineal, un conjunt de vectors és linealment independent (l.i.) si cap d'ells es pot escriure com a combinació lineal dels altres.

Nou!!: Espai vectorial і Independència lineal · Veure més »

Integració

La integral definida d'una funció representa l'àrea limitada per la gràfica de la funció amb signe positiu quant la funció té valors positius i negatiu quan en té de negatius. El concepte d'integració és un concepte fonamental de les matemàtiques avançades, especialment en els camps del càlcul i de l'anàlisi matemàtica.

Nou!!: Espai vectorial і Integració · Veure més »

Integral de Lebesgue

La integral d'una funció positiva es pot interpretar com l'àrea continguda entre la corba i l'eix x. En matemàtiques, la integral d'una funció no negativa, en el cas més senzill es pot entendre com l'àrea entre el gràfic de la funció i l'eix x. La integral de Lebesgue és una construcció matemàtica que estén la integral a una classe de funcions més gran; també estén els dominis sobre els quals es poden definir aquestes funcions.

Nou!!: Espai vectorial і Integral de Lebesgue · Veure més »

Integral de Riemann

La integral de Riemann és una operació sobre una funció contínua i limitada en un interval, on a i b són anomenats extrems de la integració.

Nou!!: Espai vectorial і Integral de Riemann · Veure més »

Interval (matemàtiques)

En àlgebra, un interval és un conjunt que conté tots i cadascun dels nombres reals que es troben entre els dos nombres indicats, i a més pot contenir aquests dos nombres en funció de si l'interval és tancat o obert.

Nou!!: Espai vectorial і Interval (matemàtiques) · Veure més »

Isomorfisme

En matemàtiques, un isomorfisme és un morfisme que admet un invers, que és també un morfisme.

Nou!!: Espai vectorial і Isomorfisme · Veure més »

Jean-Baptiste-Joseph Fourier

Placa a la casa natal de Joseph Fourier a Auxerre Jean-Baptiste-Joseph Fourier (Auxerre, França, 21 de març de 1768 - París, 16 de maig de 1830) fou un matemàtic, físic i egiptòleg francès, conegut pels seus treballs sobre la descomposició de funcions periòdiques en sèries trigonomètriques convergents anomenades ''sèries de Fourier'' i la seva aplicació als problemes de la propagació de la calor (Llei de Fourier).

Nou!!: Espai vectorial і Jean-Baptiste-Joseph Fourier · Veure més »

Jean-Robert Argand

Jean Robert Argand (1768-1822), fou un matemàtic aficionat francès, al qual s'atribueix el descobriment del pla complex.

Nou!!: Espai vectorial і Jean-Robert Argand · Veure més »

Límit

En matemàtiques, la noció de límit és força intuïtiva, malgrat la seva formulació abstracta.

Nou!!: Espai vectorial і Límit · Veure més »

Lema de Zorn

El lema de Zorn o axioma de Zorn és un enunciat en teoria de conjunts, equivalent a l'axioma de l'elecció, que sovint s'usa per demostrar l'existència d'un objecte matemàtic que no es pot obtenir explícitament.

Nou!!: Espai vectorial і Lema de Zorn · Veure més »

Linealització

En matemàtiques i les seves aplicacions, la linealització es refereix al procés de trobar l'aproximació lineal a una funció en un punt donat.

Nou!!: Espai vectorial і Linealització · Veure més »

Matemàtiques

Representacions matemàtiques de diversos camps La matemàtica (encara que, per a referir-se a l'estudi i ciència, s'acostuma a utilitzar el plural matemàtiques) és aquella ciència que estudia patrons en les estructures de cossos abstractes i en les relacions que s'estableixen entre aquests (del mot derivat del grec μάθημα, máthēma: ciència, coneixement, aprenentatge; μαθηματικός, mathēmatikós).

Nou!!: Espai vectorial і Matemàtiques · Veure més »

Matriu (matemàtiques)

En matemàtiques, una matriu és una taula rectangular de nombres o, més generalment, d'elements d'una estructura algebraica de forma d'anell.

Nou!!: Espai vectorial і Matriu (matemàtiques) · Veure més »

Mòdul lliure

Si a l'estructura d'espai vectorial hom substitueix el cos d'escalars per un anell, l'estructura obtinguda és la de mòdul.

Nou!!: Espai vectorial і Mòdul lliure · Veure més »

Mòdul vectorial

El mòdul vectorial expressa el valor numèric d'una magnitud vectorial.

Nou!!: Espai vectorial і Mòdul vectorial · Veure més »

Mecànica quàntica

freqüències ressonants de l'acústica). La mecànica quàntica, coneguda també com a física quàntica o com a teoria quàntica, és la branca de la física que estudia el comportament de la llum i de la matèria a escales microscòpiques, en què l'acció és de l'ordre de la constant de Planck.

Nou!!: Espai vectorial і Mecànica quàntica · Veure més »

Morfisme

En matemàtiques, un morfisme o homomorfisme és, en general, una aplicació entre dos conjunts dotats d'una mateixa estructura algebraica, que és respectada per l'aplicació.

Nou!!: Espai vectorial і Morfisme · Veure més »

Mostreig

* mostreig és un castellanisme per mostratge.

Nou!!: Espai vectorial і Mostreig · Veure més »

Multiplicació de matrius

En matemàtiques, la multiplicació o producte de matrius és l'operació de multiplicació efectuada entre dues matrius, o bé entre una matriu i un escalar.

Nou!!: Espai vectorial і Multiplicació de matrius · Veure més »

N-pla

En matemàtiques, si n és un nombre natural, aleshores una n-pla (de vegades n-tupla) és una seqüència o llista ordenada de n objectes, i aquests elements es diu que són les seves components.

Nou!!: Espai vectorial і N-pla · Veure més »

Nombre

Un nombre és el concepte que sorgeix del resultat de comptar les coses que formen un agregat, o una generalització d'aquest concepte.

Nou!!: Espai vectorial і Nombre · Veure més »

Nombre algebraic

En matemàtiques, un nombre algebraic és un nombre real o complex que és arrel d'un polinomi no nul amb coeficients racionals (o equivalentment enters).

Nou!!: Espai vectorial і Nombre algebraic · Veure més »

Nombre cardinal

En matemàtiques, els nombres cardinals, o senzillament cardinals, són nombres usats per a expressar la quantitat d'elements d'un conjunt.

Nou!!: Espai vectorial і Nombre cardinal · Veure més »

Nombre complex

En matemàtiques, un nombre complex és un nombre, z, que es pot expressar en la forma on a i b són nombres reals, i i és la unitat imaginària, que satisfà la propietat fonamental En l'expressió donada, a s'anomea la part real del nombre complex, a.

Nou!!: Espai vectorial і Nombre complex · Veure més »

Nombre enter

Els nombres enters són els que designen quantitats no fraccionables en parts més petites que la unitat.

Nou!!: Espai vectorial і Nombre enter · Veure més »

Nombre π

En matemàtiques, π és la constant d'Arquimedes, una constant que relaciona el diàmetre de la circumferència amb la longitud del seu perímetre.

Nou!!: Espai vectorial і Nombre π · Veure més »

Nombre racional

S'anomena nombre racional a tot aquell nombre que pot ser expressat com a resultat de la divisió de dos nombres enters, amb el divisor diferent de 0.

Nou!!: Espai vectorial і Nombre racional · Veure més »

Nombre real

En matemàtiques, els nombres reals (\R) informalment es poden concebre com els nombres associats a longituds o qualsevol mena de magnitud física que se suposa que és contínua.

Nou!!: Espai vectorial і Nombre real · Veure més »

Nombre transcendent

Un nombre transcendent, en matemàtiques, és aquell (real o complex) que no és arrel de cap polinomi (no nul) amb coeficients enters.

Nou!!: Espai vectorial і Nombre transcendent · Veure més »

Norma (matemàtiques)

En matemàtica, la norma és la funció que assigna, a cada vector d'un espai vectorial, una longitud.

Nou!!: Espai vectorial і Norma (matemàtiques) · Veure més »

Nucli (matemàtiques)

Dins el context de les funcions reals de variable real, el nucli és el subconjunt dels nombres reals tals que tenen el 0 com a imatge.

Nou!!: Espai vectorial і Nucli (matemàtiques) · Veure més »

Operador bilineal

En matemàtiques, un operador bilineal és una multiplicació "generalitzada" que compleix amb la propietat distributiva.

Nou!!: Espai vectorial і Operador bilineal · Veure més »

Operador compacte

En anàlisi funcional, una branca de les matemàtiques, un operador compacte és un operador lineal L d'un espai de Banach X a un altre espai de Banach Y, tal que la imatge per L de qualsevol subconjunt afitat X és un subconjunt relativament compacte de Y. Un operador d'aquesta forma és necessàriament un operador afitat, i per tant continu.

Nou!!: Espai vectorial і Operador compacte · Veure més »

Operador diferencial

En matemàtiques, un operador diferencial és un operador lineal definit com una funció de l'operador de diferenciació.

Nou!!: Espai vectorial і Operador diferencial · Veure més »

Oposat (matemàtiques)

En matemàtiques, l'element oposat o l'element invers de l'addició, d'un nombre n és el nombre que, quan se suma a n, dóna zero.

Nou!!: Espai vectorial і Oposat (matemàtiques) · Veure més »

Optimització matemàtica

En matemàtiques, estadística, ciències empíriques, ciències de la computació o economia, la optimització matemàtica (també dita optimització o programació matemàtica) és la selecció del millor element (respecte d'un criteri determinat) entre un conjunt d'elements disponibles.

Nou!!: Espai vectorial і Optimització matemàtica · Veure més »

Ortogonal

En matemàtiques, el terme ortogonal, és una generalització del concepte geomètric perpendicular.

Nou!!: Espai vectorial і Ortogonal · Veure més »

Paral·lelisme

Un paral·lelisme és, en retòrica, un recurs literari que consisteix en la repetició d'una mateixa estructura en diverses frases seguides, de tal manera que la successió simètrica dels mots referma la idea que hom vol transmetre.

Nou!!: Espai vectorial і Paral·lelisme · Veure més »

Parell ordenat

Un parell ordenat és un conjunt de dos elements amb un ordre fixat.

Nou!!: Espai vectorial і Parell ordenat · Veure més »

Pierre de Fermat

Pierre de Fermat (17 d'agost de 1601 o 1607/8 – 12 de gener de 1665) fou un jurista i matemàtic occità, sobresortí pels seus treballs matemàtics.

Nou!!: Espai vectorial і Pierre de Fermat · Veure més »

Pla

perpendiculars a l'espai tridimensional. En matemàtiques un pla és una superfície imaginària de dues dimensions, infinita i sense curvatura.

Nou!!: Espai vectorial і Pla · Veure més »

Polinomi

Un polinomi és una expressió algebraica formada per la suma de diversos monomis, anomenats termes del polinomi.

Nou!!: Espai vectorial і Polinomi · Veure més »

Polinomi característic

En l'àlgebra lineal, s'associa un polinomi a cada matriu quadrada anomenat polinomi característic.

Nou!!: Espai vectorial і Polinomi característic · Veure més »

Polinomi mínim

En matemàtiques, el polinomi mínim d'un element α és el polinomi mònic p de menor grau tal que p(&alpha).

Nou!!: Espai vectorial і Polinomi mínim · Veure més »

Principi de superposició

El principi de superposició o teorema de superposició és un resultat matemàtic que permet descompondre un problema lineal en dos o més subproblemes més senzills, de manera que el problema original s'obté com "superposició" o "suma" d'aquests subproblemes més senzills.

Nou!!: Espai vectorial і Principi de superposició · Veure més »

Procés d'ortogonalització de Gram-Schmidt

Els dos primers passos del procés d'ortogonalització de Gram-Schmidt En matemàtiques, i en particular en àlgebra lineal i anàlisi numèrica, el procés d'ortogonalització de Gram-Schmidt és un mètode per ortonormalitzar un conjunt de vectors d'un espai prehilbertià, habitualment l'espai euclidià Rn dotat amb el producte escalar estàndard.

Nou!!: Espai vectorial і Procés d'ortogonalització de Gram-Schmidt · Veure més »

Processament de senyals

El processament de senyals (també anomenat tractament de senyals) és la disciplina que desenvolupa i estudia les tècniques de tractament (filtratge, amplificació,...), d'anàlisi i d'interpretació dels senyals, tant en senyals continus (Processament analògic de senyals) com senyals discrets (Processament digital de senyals).

Nou!!: Espai vectorial і Processament de senyals · Veure més »

Processament de senyals digitals

Fig.1 Esquema de blocs bàsic d'un sistema DSP El processament de senyals digitals (DSP de Digital Signal Processing) és una àrea de l'enginyeria que es dedica a l'anàlisi i processament de senyals (àudio, veu, imatges, video) que són discrets o que han sigut discretitzats mitjançant cert procediment.

Nou!!: Espai vectorial і Processament de senyals digitals · Veure més »

Producte cartesià

En teoria de conjunts, el producte cartesià és un producte directe de conjunts.

Nou!!: Espai vectorial і Producte cartesià · Veure més »

Producte escalar

En les matemàtiques, un producte escalar —també conegut com a producte interior o punt— és una operació algebraica entre dos vectors que resulta en un escalar.

Nou!!: Espai vectorial і Producte escalar · Veure més »

Producte vectorial

En matemàtiques, el producte vectorial o producte extern és una operació entre dos vectors d'un espai euclidià tridimensional orientat que retorna un altre vector ortogonal als dos vectors originals.

Nou!!: Espai vectorial і Producte vectorial · Veure més »

Propietat anticommutativa

En matemàtiques, la propietat anticommutativa és la propietat d'una operació en la qual si se'n canvia la posició de dos arguments qualsevol el resultat final queda canviat de signe.

Nou!!: Espai vectorial і Propietat anticommutativa · Veure més »

Propietat associativa

En matemàtiques, l'associativitat o propietat associativa és una propietat que pot tenir una operació binària.

Nou!!: Espai vectorial і Propietat associativa · Veure més »

Propietat commutativa

Exemple que mostra la commutativitat de la suma: 3 + 2.

Nou!!: Espai vectorial і Propietat commutativa · Veure més »

Propietat distributiva

En matemàtiques, es diu que un operador \circ té la propietat distributiva sobre un operador \star, o que \circ és distributiu respecte de \star en un conjunt E si per a tots x, y, z de E, es tenen les propietats següents.

Nou!!: Espai vectorial і Propietat distributiva · Veure més »

Quantitat de moviment

La quantitat de moviment o moment lineal (p) d'un cos és el producte de la seva massa per la seva velocitat mesurades en un determinat sistema de referència.

Nou!!: Espai vectorial і Quantitat de moviment · Veure més »

Quaternió

Els quaternions són una generalització dels nombres complexos, de tal manera que si un nombre complex defineix dues dimensions afegint la component i (cal recordar que \mathbf.

Nou!!: Espai vectorial і Quaternió · Veure més »

Radar

Antena de radar per a la detecció d'avions. Radar és un sistema per a detectar o localitzar objectes a distància mitjançant ones de ràdio d'alta freqüència.

Nou!!: Espai vectorial і Radar · Veure més »

Recta

Una recta, o línia recta, és un objecte geomètric format per un conjunt d'infinits punts, infinitament llarg i infinitament prim, que no té curvatura.

Nou!!: Espai vectorial і Recta · Veure més »

Recta real

En matemàtiques, la recta real és simplement el conjunt R dels nombres reals.

Nou!!: Espai vectorial і Recta real · Veure més »

Relació d'equivalència

Sigui A\, un conjunt qualsevol, una relació en A\, és un criteri que ens permet dir si dos elements qualsevol de A\,, satisfan la relació o no.

Nou!!: Espai vectorial і Relació d'equivalència · Veure més »

Relació d'ordre

Sigui A\, un conjunt qualsevol.

Nou!!: Espai vectorial і Relació d'ordre · Veure més »

Relativitat especial

Albert Einstein 1921 La Teoria especial de la relativitat (coneguda també com a relativitat especial, relativitat restringida o RE), va ser publicada per Albert Einstein el 1905,Albert Einstein (1905).

Nou!!: Espai vectorial і Relativitat especial · Veure més »

Relativitat general

Representació bidimensional de la distorsió espaitemps. La presència de matèria modifica la geometria de l'espaitemps. La relativitat general, també coneguda com a teoria de la relativitat general, és una teoria geomètrica de la gravitació publicada per Albert Einstein el 1915 com a segona part de la seva teoria de la relativitat.

Nou!!: Espai vectorial і Relativitat general · Veure més »

René Descartes

René Descartes (Renatus Cartesius en llatí) va ser un important filòsof racionalista francès del segle XVII, també conegut per les seves obres de matemàtiques i de diferents branques de la ciència.

Nou!!: Espai vectorial і René Descartes · Veure més »

Representació de grup

En el camp matemàtic de la teoria de representacions, les representacions de grups descriuen grups abstractes en termes de transformacions lineals d'espais vectorials; en particular, es poden utilitzar per representar els elements del grup com a matrius, de tal manera que l'operació del grup es pot representar mitjançant la multiplicació de matrius.

Nou!!: Espai vectorial і Representació de grup · Veure més »

Sèrie (matemàtiques)

La sèrie geomètrica 1 + 1/2 + 1/4 + 1/8 +... convergeix a 2. En matemàtiques, una sèrie és la suma dels termes d'una successió.

Nou!!: Espai vectorial і Sèrie (matemàtiques) · Veure més »

Sèrie de Fourier

En matemàtiques, una sèrie de Fourier descompon una funció periòdica en una suma de funcions oscil·latòries simples: el sinus i el cosinus.

Nou!!: Espai vectorial і Sèrie de Fourier · Veure més »

Sèrie de Taylor

El polinomi de Taylor aproxima una funció en el veïnat d'un punt. A mesura que augmenta el grau del polinomi, millor és l'aproximació. Aquest gràfic mostra la funció sinus (en negre) i els seus polinomis de Taylor de graus 1, 3, 5, 7, 9, 11 i 13. La funció exponencial (en blau) i la suma dels primers ''n''+1 termes de la seva sèrie de Taylor centrada a 0 (en vermell) En matemàtiques, i més específicament en càlcul infinitesimal, la sèrie de Taylor és una representació d'una funció com una suma infinita de termes calculats a partir dels valors de les derivades de la funció en un punt concret.

Nou!!: Espai vectorial і Sèrie de Taylor · Veure més »

Segle XIX

Mapamundi el 1897. L'Imperi britànic era la superpotència del segle El segle dinou va des de l'1 de gener de 1801 fins al 31 de desembre de 1900 (en el calendari gregorià).

Nou!!: Espai vectorial і Segle XIX · Veure més »

Segle XVII

El segle XVII és un període de l'edat moderna que inclou els anys compresos entre 1601 i 1700, i que suposa un període de crisi política i econòmica gairebé generalitzat, mentre que en l'àmbit cultural i científic es duen a terme grans avenços, fruit de la nova mentalitat racionalista i individualista, que posa en dubte vells dogmes.

Nou!!: Espai vectorial і Segle XVII · Veure més »

Si i només si

Símbols lògicsper a representarsii.

Nou!!: Espai vectorial і Si i només si · Veure més »

Sinusoide

gràfica del sinus i cosinus són funcions sinusoïdals amb fases diferents Una sinusoide o ona sinusoïdal és un tipus de funció matemàtica que es pot expressar mitjançant la funció sinus i representa una oscil·lació periòdica i suau.

Nou!!: Espai vectorial і Sinusoide · Veure més »

Sistema d'equacions lineals

Cada equació d'un sistema d'equacions amb tres variables determina un pla. Resoldre el sistema és trobar els punt d'intersecció de tots els plans. En el sistema representat de la il·lustració determina tres plans (tres equacions) que es tallen en un punt, de manera que el sistema té una única solució (sistema compatible determinat). En matemàtiques, un sistema d'equacions lineals és un conjunt d'equacions lineals que comparteixen el mateix conjunt de variables o incògnites.

Nou!!: Espai vectorial і Sistema d'equacions lineals · Veure més »

Sistema de coordenades

Sistema 3D de coordenades. En geometria, un sistema de coordenades és un sistema que utilitza un o més números o coordenades, per determinar de forma única la posició d'un punt o d'un altre element geomètric.

Nou!!: Espai vectorial і Sistema de coordenades · Veure més »

Stefan Banach

Stefan Banach, nascut el 1892, mort el 1945, fou un matemàtic polonès, professor a Lwów (Lviv, Ucraïna) des de 1927.

Nou!!: Espai vectorial і Stefan Banach · Veure més »

Subconjunt

Exemple gràfic, A⊆B. Un subconjunt és un conjunt format per elements d'una altre conjunt.

Nou!!: Espai vectorial і Subconjunt · Veure més »

Successió (matemàtiques)

En matemàtiques, una successió o seqüència és una llista ordenada d'objectes.

Nou!!: Espai vectorial і Successió (matemàtiques) · Veure més »

Successió de Cauchy

En matemàtiques, una successió de Cauchy és una successió tal que, parlant intuïtivament, la distància entre els seus elements es va fent més petita a mesura que s'avança en la successió, fins al punt que la distància entre dos dels seus elements pot ser tan petita com vulguem.

Nou!!: Espai vectorial і Successió de Cauchy · Veure més »

Sumatori

El sumatori és l'addició d'un conjunt de nombres; el resultat és la seva suma o total.

Nou!!: Espai vectorial і Sumatori · Veure més »

Taula de símbols matemàtics

En matemàtica, uns símbols són sovint utilitzats dins les fórmules i les proposicions.

Nou!!: Espai vectorial і Taula de símbols matemàtics · Veure més »

Tensor

Un tensor de segon ordre, en tres dimensions. En matemàtiques, un tensor és certa classe d'entitat algebraica de diverses components, que generalitza els conceptes d'escalar, vector i matriu d'una manera que sigui independent de qualsevol sistema de coordenades escollit.

Nou!!: Espai vectorial і Tensor · Veure més »

Teorema de convolució

En matemàtica, el teorema de convolució estableix que en determinades circumstàncies, la Transformada de Fourier d'una convolució és el producte punt a punt de les transformades de Fourier.

Nou!!: Espai vectorial і Teorema de convolució · Veure més »

Teorema de representació de Riesz

Existeixen diversos teoremes dins de l'anàlisi funcional coneguts com el Teorema de representació de Riesz.

Nou!!: Espai vectorial і Teorema de representació de Riesz · Veure més »

Teorema espectral

En matemàtiques, en particular en àlgebra lineal i anàlisi funcional, el teorema espectral fa referència a diferents resultats sobre operadors lineals o matriu.

Nou!!: Espai vectorial і Teorema espectral · Veure més »

Teoria de conjunts

La teoria de conjunts és la branca de les matemàtiques que estudia els conjunts.

Nou!!: Espai vectorial і Teoria de conjunts · Veure més »

Teoria de grups

En aquest article es desenvoluparà un enfocament tècnic de la teoria de grups, per una introducció planera vegeu: Introducció a la teoria de grups La teoria de grups dins la matemàtica estudia les propietats dels grups, i com classificar-los.

Nou!!: Espai vectorial і Teoria de grups · Veure més »

Teoria de nombres

Bachet de Méziriac, edició amb comentaris de Pierre de Fermat publicada el 1670. La teoria de nombres és la branca de les matemàtiques pures que estudia les propietats dels nombres enters i conté una quantitat considerable de problemes que són "fàcilment compresos pels no matemàtics", però més en general, estudia les propietats dels elements de dominis enters (anells commutatius amb element unitari i element neutre), així com diversos problemes derivats del seu estudi.

Nou!!: Espai vectorial і Teoria de nombres · Veure més »

Teoria de nombres algebraics

Portada de la primera edició de Disquisitiones arithmeticae, una de les obres originàries de la teoria de nombres algebraics moderna La teoria dels nombres algebraics és una branca de la teoria de nombres en què el concepte de nombre s'estén al de nombres algebraics, que són les arrels dels polinomis no nuls amb coeficients racionals.

Nou!!: Espai vectorial і Teoria de nombres algebraics · Veure més »

Teoria dels jocs

La teoria de jocs és una branca de la matemàtica aplicada que estudia les situacions estratègiques en què els jugadors escullen diferents accions en un intent per maximitzar els guanys o retorns.

Nou!!: Espai vectorial і Teoria dels jocs · Veure més »

Topologia

Una ''cinta de Möbius'', un objecte amb només una superfície i una vora. Aquest tipus d'estructures són objecte de l'estudi de la topologia. La topologia (del Grec topos, lloc i logos, ciència) és una branca de les matemàtiques que estudia les propietats espacials i les deformacions bicontínues (dues dimensions) de l'espai.

Nou!!: Espai vectorial і Topologia · Veure més »

Transformada cosinus discreta

Concentració d'energia d'una DCT-II bidimensional comparada amb una DFT La transformada cosinus discreta (DCT, de l'anglès discrete cosine transform) és una transformada basada amb la Transformada Discreta de Fourier amb moltes aplicacions a la ciència i a l'enginyeria, una de les més importants és a l'hora de la compressió del senyal d'àudio, vídeo i imatges.

Nou!!: Espai vectorial і Transformada cosinus discreta · Veure més »

Transformada discreta de Fourier

En matemàtica aplicada, i més particularment en teoria del senyal, la transformada discreta de Fourier o transformada de Fourier discreta, a vegades denotada per l'acrònim DFT de l'anglès discrete Fourier transform, és un tipus de transformada discreta usat en el processament del senyal digital, anàleg a la transformada de Fourier per al processament del senyal analògic.

Nou!!: Espai vectorial і Transformada discreta de Fourier · Veure més »

Transformada ràpida de Fourier

Fig.1 FFT de la suma de 2 senyal sinusoidals de 300 i 600 Hz (imatge superior) Resultat de la FFT (imatge inferior) La transformada ràpida de Fourier (o FFT, de l'anglès Fast Fourier transform), no és més que una forma molt ràpida i eficient de calcular la transformada discreta de Fourier (DFT) d'un senyal discret i la seva inversa, la transformada inversa discreta de Fourier (IDFT).

Nou!!: Espai vectorial і Transformada ràpida de Fourier · Veure més »

Unitat imaginària

i''' en el pla complex o pla cartesià. Els nombres reals estan representats per l'eix horitzontal, i els nombres imaginaris purs estan representats per l'eix vertical. La unitat imaginària o nombre imaginari unitat, denotat per, és un concepte matemàtic que estén el sistema dels nombres reals al sistema dels nombres complexos.

Nou!!: Espai vectorial і Unitat imaginària · Veure més »

Valor propi, vector propi i espai propi

imatges els vectors verds. Conserven la mateixa direcció, per tant són vectors propis. El valor propi associat és -1/2 (perquè canvien de sentit i el mòdul és la meitat). En aquest cas particular l'espai propi és l'espai sencer. Figura. 2. En aquesta aplicació lineal el quadre de la Mona Lisa, es transforma de tal manera que els vectors de l'eix vertical central (vector vermell) no ha canviat ni de direcció ni de sentit ni de mòdul, en canvi el vector diagonal (blau) ha canviat de direcció. En aquest cas el vector vermell és un '''vector propi''' de l'aplicació però el vector blau no ho és. Com que el vector vermell no ha canviat ni de direcció ni de mòdul, el seu '''valor propi''' és 1. Tots els vectors amb la mateixa direcció que el vector vermell són també vectors propis, amb el mateix valor propi. Tots junts, afegint-hi el vector zero formen l''''espai propi''' d'aquesta aplicació que en aquest cas és un espai de dimensió 1. En matemàtiques, i més concretament en àlgebra el concepte de vector propi és una noció que es refereix a una aplicació lineal d'un espai en si mateix.

Nou!!: Espai vectorial і Valor propi, vector propi i espai propi · Veure més »

Varietat (matemàtiques)

Realització d'una '''banda de Möbius''', a partir d'una tira de paper. La banda té només una cara. En una esfera, la suma dels angles d'un triangle no és igual a 180° (vegeu trigonometria esfèrica). Una esfera no és un espai euclidià, però localment les lleis de la geometria euclidiana són bones aproximacions. En un triangle petit en l'esfera de la terra, la suma dels angles és molt similar a 180°. Una esfera es pot representar per una col·lecció de mapes bidimensionals; per això una esfera és una varietat. En matemàtiques, més específicament en topologia, una varietat és un espai topològic en el qual tots els punts tenen un veïnat que "s'assembla" (és a dir, és homeomorf) a l'espai euclidià.

Nou!!: Espai vectorial і Varietat (matemàtiques) · Veure més »

Varietat algebraica

La cúbica torçada és una varietat algebraica projectiva. En matemàtiques, una varietat algebraica és essencialment un conjunt de zeros comuns d'un conjunt de polinomis.

Nou!!: Espai vectorial і Varietat algebraica · Veure més »

Varietat diferenciable

Una varietat diferenciable és un espai topològic separat V en el qual hi ha definida una família de funcions reals F.

Nou!!: Espai vectorial і Varietat diferenciable · Veure més »

Varietat riemanniana

Exemple de varietat riemanniana bidimensional amb diverses corbes coordenades ortogonals, així com d'altres corbes. En matemàtiques, i més específicament en geometria diferencial, una varietat riemanniana és una varietat diferenciable real dotada d'una mètrica riemanniana, és a dir, un camp tensorial diferenciable que dota cada espai tangent d'un producte escalar.

Nou!!: Espai vectorial і Varietat riemanniana · Veure més »

Veïnat (matemàtiques)

obert prou petit ''B'' que conté ''p'' i és contingut dins ''V''. Un rectangle no és un veïnat de cap dels seus vèrtexs. En topologia i àrees relacionades de la matemàtica, un veïnat o entorn és un dels conceptes bàsics en un espai topològic.

Nou!!: Espai vectorial і Veïnat (matemàtiques) · Veure més »

Vector (física)

En física un vector és un concepte matemàtic i un segment orientat que s'utilitza per descriure magnituds tals com velocitats, acceleracions o forces, en les quals és important considerar no només el valor sinó també la direcció i el sentit.

Nou!!: Espai vectorial і Vector (física) · Veure més »

Vector (matemàtiques)

Un vector és qualsevol element d'un espai vectorial i, per extensió, d'un mòdul sobre un anell commutatiu unitari.

Nou!!: Espai vectorial і Vector (matemàtiques) · Veure més »

Vector nul

En un espai vectorial el vector nul és el vector unívocament determinat per ser l'element neutre per a l'operació interna (suma de vectors).

Nou!!: Espai vectorial і Vector nul · Veure més »

William Rowan Hamilton

William Rowan Hamilton (1805-1865) va ser un matemàtic, físic i astrònom britànic irlandès.

Nou!!: Espai vectorial і William Rowan Hamilton · Veure més »

ZFC

ZFC és el conjunt d'axiomes canònic de la Teoria de conjunts.

Nou!!: Espai vectorial і ZFC · Veure més »

1636

L'any 1636 fou un any de traspàs començat en dimarts segons el Calendari Gregorià.

Nou!!: Espai vectorial і 1636 · Veure més »

1804

;Països Catalans;Resta del món.

Nou!!: Espai vectorial і 1804 · Veure més »

1827

;Països Catalans.

Nou!!: Espai vectorial і 1827 · Veure més »

1844

;Països Catalans.

Nou!!: Espai vectorial і 1844 · Veure més »

1857

;Països Catalans.

Nou!!: Espai vectorial і 1857 · Veure més »

1867

;Països Catalans.

Nou!!: Espai vectorial і 1867 · Veure més »

1888

;Països Catalans.

Nou!!: Espai vectorial і 1888 · Veure més »

1920

Estació del Nord de Terrassa el '''1920'''.

Nou!!: Espai vectorial і 1920 · Veure més »

Redirigeix aquí:

E.v., Espais vectorials, K-espai vectorial.

SortintEntrant
Hey! Estem a Facebook ara! »